
ABSTRACT: A rapid FTIR spectroscopic method was devel-
oped for quantitative determination of the cloud point (CP) in
palm oil samples. Calibration samples were prepared by blend-
ing randomized amounts of palm olein and palm stearin to pro-
duce a wide range of CP values ranging between 8.3 and
47.9°C. Both partial least squares (PLS) and principal compo-
nent regression (PCR) calibration models for predicting CP were
developed by using the FTIR spectral regions from 3000 to 2800
and 1800 to 1600 cm−1. The prediction capabilities of these cal-
ibration models were evaluated by comparing their standard er-
rors of prediction (SEP) in an independent prediction set con-
sisting of 14 palm oil samples. The optimal model based on PLS
in the spectral range 1800–1600 cm−1 produced lower SEP val-
ues (2.03°C) than those found with the PCR (2.31°C) method.
FTIR in conjunction with PLS and PCR models was found to be
a useful analytical tool for simple and rapid quantitative deter-
mination of CP in palm oil.
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Palm oil, which consists mainly of TAG of palmitic and oleic
acids, is semisolid at room temperature. Its composition and
properties, however, can be modified by various processing
techniques to produce a series of different products that can
be tailored for specific uses. Among the major products of
palm oil is a variety of oils and fats that are produced through
dry fractionation, which separates palm oil into a liquid palm
olein and a solid palm stearin by means of cooling (1). Re-
fined, bleached, and deodorized (RBD) palm olein, com-
monly known as cooking oil, is composed of 46% saturated
FA, 43% monounsaturated FA, and 11% PUFA (2). It is liq-
uid at temperatures above 25°C but starts to crystallize and
becomes cloudy at lower temperatures. Cloud is the visible
suspension of stearin crystals normally seen in a container of
palm olein stored at low temperature (<8°C). Cloud points (CP)
were determined according to AOCS Method Cc 6-25, which
is currently used for routine analysis (3). Although relatively
simple, the AOCS method is labor-intensive and tedious. 

In our laboratory, work is ongoing to develop rapid au-
tomatable methods for the analysis of palm oil and its prod-
ucts based on FTIR spectroscopy. This technology has sev-

eral advantages over conventional dispersive-based IR spec-
troscopy. FTIR technology, which is based on interferometry,
provides enhanced energy throughput and a better signal-to-
noise ratio, and incorporates substantial computing, chemo-
metric, and macroprogramming capabilities. Coupled with an
attenuated total reflectance (ATR) sampling technique, FTIR
provides a simple and convenient means of acquiring spectral
information from a wide variety of samples, many of which
are not readily amenable to IR analysis with the more com-
mon transmission sampling techniques such as IR window
cells. For instance, window cells require that samples be pre-
dissolved before being injected into the cell. In addition, the
presence of interference fringes, due to air bubbles in the cell,
may mask the absorption bands of interest.

FTIR methods have been developed to measure TBARS
(4–6), moisture content (7), iodine value (8), FFA (9,10), PV
(11,12), anisidine value (13), and slip melting point (14).
Chemometric approaches, such as partial least squares (PLS)
and principal component regression (PCR), also have been
applied in developing quantitative FTIR methods. The over-
all objectives for this study were (i) to develop a rapid FTIR
method in conjunction with an ATR method to determine CP
in palm oil with the aid of PLS and PCR techniques for mul-
tivariate analysis and (ii) to compare the prediction errors ob-
tained by PLS and PCR.

MATERIALS AND METHODS

Materials. Palm oil products, such as RBD palm olein and
RBD palm stearin, were obtained from a local refinery [Ngo
Chiew Hong (M) Sdn. Bhd., Kuala Lumpur, Malaysia]. All
chemicals used were of analytical grade. 

Analytical methods. A set of 74 standards were prepared
by blending palm olein and palm stearin (w/w) to obtain oil
blends with a wide range of CP values. The CP of each oil
was analyzed in duplicate using AOCS Standard Method Cc
6-25 in order to obtain the actual CP data (3).

Instrumentation. All spectra were collected on a Perkin-
Elmer 1725X series FTIR spectrometer (PerkinElmer Corpo-
ration, Norwalk, CT) interfaced to a PerkinElmer model 7300
professional computer and run under Infrared Data Manage-
ment System (IRDM) software. This instrument was
equipped with IR source, sealed and desiccated interferome-
ter, and room-temperature deuterated triglycine detector. An
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overhead ATR accessory was built into a dedicated sampling
station. The accessory comprised transfer optics within a des-
iccated chamber sealed from the atmosphere by two potas-
sium bromide windows. Through these windows the IR radi-
ation could be directed into the detachable ATR element. The
element was an 11-reflection zinc selenide crystal mounted
into a plate with a shallow trough for sample containment.
The crystal geometry was a 45º parallelogram with mirrored
angled faces. Owing to the presence of the potassium bromide
windows, the ATR plate could be removed for cleaning with-
out allowing water vapor into the spectrometer. 

Spectral acquisition. All samples were equilibrated to 65°C
in a conventional oven (Memmert GmbH & Co. KG,
Schwabach, Germany) and applied with a soft-tipped dispos-
able pipette (1 mL) to ensure complete coverage to the top ATR
element. All spectra were recorded from 4000 to 770 cm−1 at a
resolution of 4 cm−1. For each spectrum, 64 interferograms
were co-added before Fourier transformation and zero-filled to
give a data point spacing of approximately 2 cm−1 in the fre-
quency domain. Normal Beer apodization was then employed.
Each sample single-beam spectrum was ratioed out to a single-
beam spectrum of the clean ATR plate collected under identi-
cal conditions and converted into absorbance units. The ATR
plate was thoroughly cleaned between each sample by remov-
ing the previous sample with tissue and cleaning with hexane,
distilled water, and finally acetone.

The spectral data were stored on disk for subsequent PLS
and PCR calibration development. The Spectrum Quant+
(Version 4.1, PerkinElmer) software package was used for
spectral analysis and PCR and PLS calibrations. Correlation
and variance spectra were examined to determine the spectral
regions in the calibration set where most of the changes took
place. These regions were then explored for calibration de-
velopment. Each calibration was assessed by using the
“leave-one-out” cross-validation procedure and optimized in
terms of the appropriate number of factors in the predicted
residual error sum of squares (PRESS) test. The predicted val-
ues of the parameter in each sample were compared with the
actual values of the parameter in this reference sample, and
the PRESS was calculated. To select the number of factors in
the PLS and PCR algorithms, in order to model the system
without overfitting the concentration data, the PRESS was
calculated in the same manner each time a new factor was
added to the PLS or PCR models. The calibration was con-
sidered optimized when the PRESS was minimized. How-
ever, using the number of factors (H*) that yields a minimum
PRESS usually leads to some overfitting. A better criterion
for selecting the number of factors involved a comparison of
PRESS from models with fewer than h* factors. The model
selected is that with the fewest number of factors such that
PRESS for that model was not significantly greater than PRESS
from the model with h* factors. The F statistic was used to make
the significance determination. Haaland and Thomas (15) deter-
mined that an F-ratio probability of 0.75 is a good choice. We
selected as the optimal number of factors for the PRESS value
with the F-ratio probability of which drops below 0.75.

Data analysis. Seventy-four spectra of palm oil samples
were used to assess the performance of the PLS and PCR
techniques. The adequacy of the regression model for making
predictions was determined by graphic analysis of the residu-
als and examining the differences between the reference and
predicted CP values for systematic trends. The results of the
74 samples were split into two sets of data. The first set cor-
responded to 60 calibration samples, serving as the model-
building data set, and the remaining 14 samples served as
validation data, which were used to evaluate the predictive
ability of the selected model. The second set from the same
sample of data (74 samples) was used to build the calibration
models and assessed their performance by a leave-one-out
cross-validation step. Generally, the number of cases in the
model-building set should be 6–10 times the number of fac-
tors (16). The performance of the different models was evalu-
ated by comparing their standard error of calibration (SEC),
the standard error of prediction (SEP), and the standard error
of cross-validation (SECV) values. 

RESULTS AND DISCUSSION

Analytical methods. The calibration standard analysis showed
that the CP of the samples ranged from 8.3 to 47.9°C, with a
mean of 28.12°C and SD of 11.79°C. This range covered al-
most all of the palm oil products specified by the Palm Oil
Refiners Association of Malaysia (PORAM), i.e., RBD palm
olein with minimum 8°C and RBD palm stearin with maxi-
mum 46°C (17). 

Spectral analysis. Figure 1 presents offset FTIR ab-
sorbance spectra for 10 samples having CP values of 8.3,
12.4, 17.2, 21.8, 26.2, 30.6, 36, 40.4, 43.6, and 47.9°C. In the
spectra shown, the only noticeable differences are in the
CH2/CH3 stretching vibration (3000–2850 cm−1) (18) and the
ester linkage carbonyl band (1750–1730 cm−1) (19). One way
of assessing the representativeness of the calibration subset is
by examining the variance spectrum, which is indicative of
the spectral variability relative to the mean spectrum. The
variance spectrum (Fig. 2) shows the spectral regions where
spectral variations exist to a significant degree. Although the
magnitudes of the variations are small, they are readily mea-
sured, and this information provides a starting point for
chemometric analysis. A correlation spectrum was generated
from the variance spectrum by using the CP data as an aid in
searching for useful spectral regions that could be used to de-
velop the predictive models (20). Although many combina-
tions and permutations of wavelength regions can provide
reasonable results (of positive correlation between ab-
sorbances and reference CP values), the regions determined
to be optimal for the palm oil samples were the CH2/CH3
stretching vibration (3000–2800 cm−1) and the ester linkage
C=O stretching vibration (1800–1600 cm−1). 

Statistical multivariate models. Figure 3 shows the varia-
tions in PRESS values obtained with a different number of fac-
tors included in the PLS calibration model created with the use
of the calibration subset in the spectral regions tested. The
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calibration models with 4–8 factors yielded the optimal PRESS
values (117.93–788.87°C) and were therefore selected as the op-
timal number of factors for this technique. A similar analysis
with PCR indicated that 6–10 factors were required to obtain the

minimum PRESS values (114.6–488.03°C). PLS and PCR are
two multivariate whole-spectrum methods based on inverse
modeling, commonly used for estimation of analyte concentra-
tion in multicomponent mixtures. These chemometric methods
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FIG. 1. Representative FTIR spectra of palm oil blend samples obtained from palm olein/palm stearin blends having
cloud point values between 8.3 and 47.9°C.

FIG. 2. The variance spectrum obtained for 60 palm oil samples, illustrating the regions where spectral variation
occurs relative to the overall mean spectrum.



can effectively model the relationship between IR absorbances
and concentrations of an unknown component, without knowl-
edge of the concentrations of the other constituents in the sam-
ple and in spite of the nearly linear relationship between ab-
sorbances at differences wavelengths. Both PLS and PCR
multivariate methods consist of two steps: (i) spectral data
compression and (ii) linear regression of the compressed spec-
tral features on the concentration of the analyte of interest. In
PCR, no concentration information is used for the first step,
and the spectral variations are compressed into orthogonal
scores (21). Unlike PCR, PLS models used the CP data infor-
mation to calculate scores and therefore required fewer factors
for the optimal model.

To assess the adequacy of the regression models for mak-
ing predictions, graphic analysis of the residuals was per-
formed. Figure 4 shows the concentration residuals plotted
against the predicted CP values of the prediction set for an
eight-factor PLS model created with the use of the calibration
subset in the spectral range of 1800–1600 cm−1. This plot

showed that all samples clustered closely around the zero line,
whereas three samples show a residual greater than 2°C. 

Comparison of models. Table 1 summarizes the SEC and
SEP results obtained with different PLS and PCR models. It
seemed that the prediction errors obtained with cross-valida-
tion (SECV) of PLS and PCR (Table 2) in the complete sam-
ple population were smaller than those obtained with models
using only a calibration subset to predict concentrations in the
independent prediction set. Therefore, we concluded that the
model prediction performance given by the two methods was
similar and that this was a good sign of model robustness. The
optimal PLS analysis performed in the spectral region of
1800–1600 cm−1 was slightly better than those applied for
either the 3000–2800 cm−1 region or both used simultane-
ously. The application on that region improved the prediction
capability by 10 to 30%. The prediction capabilities of PLS
and PCR could be compared by calculating the square of their
SEP ratio into the F critical value. With this approach, the op-
timal CP prediction with PLS was not significantly better than
PCR in the region of 3000–2800 cm−1 (F-ratio = 1.69),
1800–1600 cm−1 (F-ratio = 1.29), and both regions (F-ratio =
1.82) at the 95% confidence level (F-critical = 2.48). 

Figure 5 shows the correlation between predicted CP in
palm oil blend samples from the validation set obtained with
the optimal PLS model applied in the 1800–1600 cm−1 region
and the actual CP data obtained by AOCS Method Cc 6-25
(3). The ideal predictions were represented by a straight line
that had a slope of 1 and passed through the origin. The devi-
ation of the predictions from the ideal values could be ex-
pressed statistically in terms of SE (1.994) and R2 (0.972).

Results from this study indicated that FTIR spectroscopy
was a useful technique for measuring palm oil parameters
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FIG. 3. Variation in predicted residual error sum of squares (PRESS) val-
ues with the number of partial least squares (PLS) factors used in the
calibration models in the spectral regions of 3000–2800 cm−1,
1800–1600 cm−1, and both regions combined.

FIG. 4. Distribution of concentration residuals with the predicted cloud
point values for the prediction set obtained using eight PLS factors
(3000–2800 cm−1). For abbreviation see Figure 3.

TABLE 1
Error Predictions Obtained with Different PLS and PCR Models 
and Applied to the Prediction Subset on the Chosen Spectral Ranges

SECPLS SEPPLS SECPCR SEPPCR
Spectral ranges (°C)a (°C)b (°C) (°C)

3000–2800 cm−1 3.41 (4)c 3.63 2.19 (6) 2.79
1800–1600 cm−1 1.56 (8) 2.03 1.23 (10) 2.31
3000-2800 

and 1800–1600 cm−1 1.33 (8) 3.85 2.45 (8) 2.85
aSEC, standard error of calibration.
bSEP, standard error of prediction.
cNumbers in parentheses show the factor number for the calibration model
built. PLS, partial least squares; PCR, principal component regression.

TABLE 2
Error Predictions Obtained from the Cross-Validation Step 
with Different PLS and PCR Models and Applied to All 
Palm Oil Blends in the Chosen Spectral Ranges

Spectral range SECVPLS (°C)a SECVPCR (°C)

3000–2800 cm−1 3.15 (5)b 2.25 (8)
1800–1600 cm−1 1.80 (8) 1.30 (11)
3000–2800 and 180–1600 cm−1 1.18 (10) 1.28 (11)
aSECV, standard error of cross-validation.
bNumbers in parentheses show the factor number for the calibration model
built. For other abbreviations see Table 1.



such as CP. The total analysis took less than 5 min once the spec-
trometer was precalibrated. Compared to the chemical method,
FTIR spectroscopy was capable of measuring 100 samples in a
day, so the cost of labor can be reduced dramatically.

The FTIR method developed, which was simple, fast, non-
destructive, and safe, was based on the use of the FTIR ab-
sorbance spectrum in the spectral regions of 3000–2800 cm−1

and 1800–1600 cm−1, respectively. The calibration models
obtained from PLS and PCR gave high R 2 and low SEC.
Those calibration models could be used for CP prediction for
palm oil with low error predictions.
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FIG. 5. Graph showing the correlation between the predicted cloud
point of palm oil samples using the optimal PLS model and actual cloud
point data. For abbreviation see Figure 3.


